Exercises

- Analyze and draw the graphs of

$$
\begin{aligned}
& f(x)=x \sqrt{1-x^{2}} \quad \text { with } \quad x \in[-1,1] \\
& f(x)=\sin \left(x^{2}-4\right) \quad \text { with } \\
& \binom{x(t)}{y(t)}=\binom{t^{2}}{t^{3}-3 t} \quad \text { with } \\
& \mathrm{t} \in[-2,2] \\
& \binom{x(t)}{y(t)}=\binom{\cos t}{\sin ^{3} t} \quad \text { with } \\
& \mathrm{t} \in[-\pi, \pi]
\end{aligned}
$$

Exercise 1

$$
\begin{aligned}
& f(x)=x \sqrt{1-x^{2}} \\
& x \in[-1,1]
\end{aligned}
$$

Exercise 1

- Find zero crossings

$$
\begin{aligned}
x \sqrt{1-x^{2}}=0 & \Leftrightarrow x=0 \vee \sqrt{1-x^{2}}=0 \\
& \Leftrightarrow x=0 \vee 1-x^{2}=0 \\
& \Leftrightarrow x=0 \vee x^{2}=1 \\
& \Leftrightarrow x=0 \vee x=-1 \vee x=1
\end{aligned}
$$

- Look at behavior at domain limits (see zero crossings)
- No singularity

Exercise 1

- Find zero crossings of the derivative and sign around them

$$
\begin{aligned}
& \left(x \sqrt{1-x^{2}}\right)^{\prime}=(x)^{\prime}\left(\sqrt{1-x^{2}}\right)+x\left(\sqrt{1-x^{2}}\right)^{\prime} \\
& =\sqrt{1-x^{2}}+x \times \frac{1}{2 \sqrt{1-x^{2}}} \times\left(1-x^{2}\right)^{\prime} \\
& =\sqrt{1-x^{2}}+\frac{x}{2 \sqrt{1-x^{2}}} \times(-2 x) \\
& =\sqrt{1-x^{2}}-\frac{x^{2}}{\sqrt{1-x^{2}}}=\frac{1-x^{2}-x^{2}}{\sqrt{1-x^{2}}}=\frac{1-2 x^{2}}{\sqrt{1-x^{2}}}
\end{aligned}
$$

equals zero when $x= \pm \frac{\sqrt{2}}{2}$

Exercise 1

- Sign

- Minimum at $\left(-\frac{\sqrt{2}}{2},-\frac{1}{2}\right)$
- Maximum at $\left(\frac{\sqrt{2}}{2}, \frac{1}{2}\right)$

Exercise 2

$$
\begin{aligned}
& f(x)=\sin \left(x^{2}-4\right) \\
& x \in[0, \pi]
\end{aligned}
$$

Exercise 2

- Find zero crossings $\sin \left(x^{2}-4\right)=0 \Leftrightarrow x^{2}-4=0+2 k \pi$, for integer k

$$
\vee x^{2}-4=\pi-0+2 k \pi
$$

$$
\Leftrightarrow x=\sqrt{4+2 k \pi} \vee x=\sqrt{4+\pi+2 k \pi}
$$

$$
- \text { in }[0, \pi]: x=2 \vee x=\sqrt{4-\pi} \vee x=\sqrt{4+\pi}
$$

- Look at behavior at domain limits

$$
\begin{aligned}
& -f(0)=\sin (-4) \approx 0.757 \\
& -f(\pi)=\sin \left(\pi^{2}-4\right) \approx-0.402
\end{aligned}
$$

- No singularity

Exercise 2

- Find zero crossings of the derivative and sign around them
$\left(\sin \left(x^{2}-4\right)\right)^{\prime}=\cos \left(x^{2}-4\right) \times 2 x=2 x \cos \left(x^{2}-4\right)$ equals zero if $x=0 \vee \cos \left(x^{2}-4\right)=0$

$$
\begin{aligned}
& x=0 \vee x^{2}=4+\frac{\pi}{2}+2 k \pi \vee x^{2}=4-\frac{\pi}{2}+2 k \pi \\
& x=0 \vee x=-\sqrt{\frac{8+\pi}{2}+2 k \pi \vee x=\sqrt{\frac{8+\pi}{2}+2 k \pi}} \\
& \vee x=-\sqrt{\frac{8-\pi}{2}+2 k \pi} \vee x=\sqrt{\frac{8-\pi}{2}+2 k \pi} \\
& - \text { in }[0, \pi]: \\
& \quad x=0 \vee x=\sqrt{\frac{8-\pi}{2}} \vee x=\sqrt{\frac{8+\pi}{2}} \vee x=\sqrt{\frac{8+3 \pi}{2}}
\end{aligned}
$$

Exercise 2

- Sign

$$
0 \quad \sqrt{\frac{8-\pi}{2}} \quad \sqrt{\frac{8+\pi}{2}} \quad \sqrt{\frac{8+3 \pi}{2}}
$$

$$
f^{\prime}(x)
$$

- Local minimum at $\left(\sqrt{\frac{8-\pi}{2}},-1\right)$ and $\left(\sqrt{\frac{8+3 \pi}{2}},-1\right)$
- Local maximum at $\left(\sqrt{\frac{8+\pi}{2}}, 1\right)$ and $(0, \sin (-4))$

Exercise 3

$$
\left.\begin{array}{l}
x(t) \\
y(t)
\end{array}\right)=\binom{t^{2}}{t^{3}-3 t}
$$

Exercise 3

- Find zero crossings of component functions
$\left\{\begin{array}{l}x(t)=0 \Leftrightarrow t^{2}=0 \Leftrightarrow t=0 \\ y(t)=0 \Leftrightarrow t^{3}-3 t=0 \Leftrightarrow t=0 \vee t^{2}=3 \Leftrightarrow t=0 \vee t= \pm \sqrt{3}\end{array}\right.$
- f crosses x-axis at $t=0$
- f crosses y-axis at $t=0, t=-\sqrt{3}$ and $t=\sqrt{3}$
- so f pass by origin at $t=0$
- Look at behavior at domain ends

$$
-\binom{x(-2)=4}{y(-2)=-2} ; \quad\binom{x(2)=4}{y(2)=2}
$$

- No singularity

Exercise 3

- Look at derivative

$$
\binom{x^{\prime}(t)=\left(t^{2}\right)^{\prime}=2 t}{y^{\prime}(t)=\left(t^{3}-3 t\right)^{\prime}=3 t^{2}-3}
$$

- zero crossing

$$
\binom{2 t=0 \Leftrightarrow t=0}{3 t^{2}-3=0 \Leftrightarrow t=-1 \vee t=1}
$$

- tangent vector at $0,-1$ and 1
$\binom{x^{\prime}(0)=0}{y^{\prime}(0)=-3}$
$\binom{x^{\prime}(-1)=-2}{y^{\prime}(-1)=0}$
$\binom{x^{\prime}(1)=2}{y^{\prime}(1)=0}$

Exercise 4

$$
\begin{aligned}
& \binom{x(t)}{y(t)}=\binom{\cos t}{\sin ^{3} t} \\
& t \in[-\pi, \pi]
\end{aligned}
$$

Exercise 4

- Find zero crossings of component functions
$\left\{x(t)=0 \Leftrightarrow \cos t=0 \Leftrightarrow t=\frac{\pi}{2}+2 k \pi \vee t=-\frac{\pi}{2}+2 k \pi\right.$, for integer k
$y(t)=0 \Leftrightarrow \sin ^{3}(t)=0 \Leftrightarrow t=2 k \pi \vee t=\pi+2 k \pi$, for integer k
- fcrosses x-axis at $t=-\frac{\pi}{2}$ and $t=\frac{\pi}{2}$
- f crosses y -axis at $t=-\pi, t=0$ and $t=\pi$
- so fdoes not pass by origin
- Look at behavior at domain ends

$$
-\binom{x(-\pi)=-1}{y(-\pi)=0} ; \quad\binom{x(\pi)=-1}{y(\pi)=0}
$$

Exercise 4

- Look at derivative
$\binom{x^{\prime}(t)=(\cos t)^{\prime}=-\sin t}{y^{\prime}(t)=\left(\sin ^{3}(t)\right)^{\prime}=3 \sin ^{2}(t) \cos t}$

- zero crossing

$$
\begin{aligned}
& \binom{-\sin t=0 \Leftrightarrow t=2 k \pi \vee t=\pi+2 k \pi, \text { for integer } \mathrm{k}}{3 \sin ^{2}(t) \cos t=0 \Leftrightarrow \sin ^{2}(t)=0 \vee \cos t=0} \\
& \binom{t=2 k \pi \vee t=\pi+2 k \pi, \text { for integer } \mathrm{k}}{t=2 k \pi \vee t=\pi+2 k \pi \vee t=\frac{\pi}{2}+2 k \pi \vee t=-\frac{\pi}{2}+2 k \pi}
\end{aligned}
$$

- tangent vector at $-\pi,-\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi$

$$
\begin{aligned}
& \binom{x^{\prime}(-\pi)=0}{y^{\prime}(-\pi)=0} ;\binom{x^{\prime}\left(-\frac{\pi}{2}\right)=1}{y^{\prime}\left(-\frac{\pi}{2}\right)=0} ;\binom{x^{\prime}(0)=0}{y^{\prime}(0)=0} ;\binom{x^{\prime}\left(\frac{\pi}{2}\right)=-1}{y^{\prime}\left(\frac{\pi}{2}\right)=0} ; \\
& \binom{x^{\prime}(\pi)=0}{y^{\prime}(\pi)=0}
\end{aligned}
$$

